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We derived

relativistic, 
second order, 
multi-component

hydrodynamic equation

with no ansatz!!
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We are interested in the hydrodynamic analyses of 
the following two similar phenomena:
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Ambiguity in the definition of the flow velocity 

Unphysical instabilities of the equilibrium state 

Lack of causality

Quark-Gluon Plasma
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Relativistic hydrodynamics is useful.

Ambiguity in the definition of the flow velocity 

Unphysical instabilities of the equilibrium state 

Lack of causality

Quark-Gluon Plasma

Fundamental problems

Unitary Fermi Gas

T. Schafer (2014)

Expanding gas behaves hydrodynamically.

Two regions: hydrodynamic core and dilute corona 

How to describe the transition between these regions 

Consider a relaxation of dissipative currents

Problem

We are interested in the hydrodynamic analyses of 
the following two similar phenomena:

Second-Order (Mesoscopic) 
Hydrodynamic Equation is 

Needed!!

04/171. Introduction and MotivationYuta Kikuchi (Kyoto U.) 05/27



04/171. Introduction and MotivationYuta Kikuchi (Kyoto U.) 06/27

@µT
µ⌫ = 0,

@µN
µ = 0,

Relativistic hydrodynamic equation

{
0th order

,



04/171. Introduction and MotivationYuta Kikuchi (Kyoto U.) 06/27

@µT
µ⌫ = 0,

@µN
µ = 0,

Relativistic hydrodynamic equation

{
0th order

: bulk pressure
: stress tensor
: heat flow

{

1st order

Acausal (Diffusion) eq.

,



04/171. Introduction and MotivationYuta Kikuchi (Kyoto U.) 06/27

@µT
µ⌫ = 0,

@µN
µ = 0,

Relativistic hydrodynamic equation

{
0th order

: bulk pressure
: stress tensor
: heat flow
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1st order
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1. Introduction and Motivation

Moment method
Relativistic Boltzmann equation

Moment equations

Balance equation}
Ambiguous

Israel and Stewart (1979)
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Theoretical foundation is needed!



2. Renormalization Group Method
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basic concept

Taking the limit

10/19

Renormalization group method is used to derive an infrared 
effective dynamics of underlying microscopic theories.

… global solution

… perturbative solution

This RG eq. describes 
the slow dynamics!!

Coarse-graining condition

Ei, Fujii, and Kunihiro(2000)

Kunihiro (1995)

Chen, Goldenfeld, and Oono (1994)
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Boyanovski, et.al. (1999)(condition for constructing envelope = RG eq.)



2. Renormalization Group Method

Ex.  Van der Pol equation

Initial value is taken as the exact solution

Local solution is represented as perturbation series

x̃(t0; t0) = x(t0)

= x̃0(t0; t0) + ✏x̃1(t0; t0) + ✏

2
x̃2(t0; t0) + · · ·
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2. Renormalization Group Method

0th order equation

1st order equation

0th order solution

1st order solution

The global solution 

Solve the renormalization group equation to 
obtain the global solution

Equations for slow variables

{

{
secular divergence
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2. Renormalization Group Method

The solution of Van der Pol equation
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Perturbative solution RG-improved solution Numerical solution

limit cycle cf. Van der Pol oscillator

✏ = 0.1
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3. Derivation of Hydrodynamic Equation
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Kadanoff-Baym eq.
�
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�

p

µ
@µfp(x) = C[f ]p(x)

Boltzmann eq.

Hydrodynamic eq.

Derivative expansion

Quasi-particle approximation :

Perturbative calculation w.r.t Knudsen number and 
renormalization-group resummation

G

<(k, x) / �(k2 �m

2)fk(x)

Green’s functionself energy

a = +1: boson, �1: fermion

Tsumura and Kunihiro (2012) : 2nd order in classical case
Tsumura, Kunihiro, and Ohnishi (2007) : 1st order in classical case
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Relativistic Boltzmann equation 

Balance equation
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Derivation of the first-order hydrodynamics
Hatta and Kunihiro (2002)
Kunihiro and Tsumura (2006)
Tsumura, Kunihiro, and Ohnishi (2007)



p

µ
@µfp(x) = C[f ]p(x)

rµ ⌘ (gµ⌫ � uµu⌫)@⌫ ⌘ �µ⌫@⌫

@

@⌧

fp(x) =
1

p · uC[f ]p(x)� ✏

1

p · up ·rfp(x)

@

@⌧
⌘ uµ@µ,

uµ : flow velocity
✏ : measure of the inhomogeneity of fluid

Relativistic Boltzmann eq.

f̃p(⌧ ; ⌧0) = f̃ (0)
p (⌧ ; ⌧0) + ✏f̃ (1)

p (⌧ ; ⌧0) + ✏2f̃ (2)
p (⌧ ; ⌧0) + · · ·Perturbative solution:
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Solve the relativistic Boltzmann eq. perturbatively
Initial condition :

slow modes 
corresponding to  
conserved quantities

fast modes

-space

-space
solution space
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f (0)
p (⌧, ⌧0) = f eq
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0th-order eq. 0th-order solution

interested in the slow dynamics
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     …energy and momenta 
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f (0)
p (⌧, ⌧0) = f eq

p (⌧0) ⌘
1

e�(⌧0){p·u(⌧0)�µ(⌧0)} � a

0th-order eq. 0th-order solution

secular divergences

Perturbative solution up to 2nd order

interested in the slow dynamics

1st order eq.

2nd order eq.

,

slow modes

fast modes

5 zero-mode of A: 
     …energy and momenta 
     …particle (mass) current



3. Derivation of Hydrodynamic Equation

df̃p(⌧ ; ⌧0)

d⌧0

�����
⌧0=⌧

= 0

Projecting on     -space

Write down the renormalization group equation

This equation corresponds to 
the hydrodynamic eq.!!
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slow modes

fast modes

{

-space

-space
Solution space



slow modes

fast modes

“Doublet scheme”: Tsumura and Kunihiro (2013)

-space

-space

Extension to second order eq.
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Solution space

Include the quasi-slow dynamics besides the slowest dynamics

Enable us to describe the relaxation 
of dissipative currents:  

Second order equation



slow modes
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fast modes
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-space

-space
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Solution space

Include the quasi-slow dynamics besides the slowest dynamics

Enable us to describe the relaxation 
of dissipative currents:  

Second order equation



4. Result: Hydrodynamic Equation
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Second order hydrodynamic eq. (single-component)

with the microscopic expressions :

⌧⇧ ⌘
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Eq. of relaxation
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: bulk pressure
: stress tensor
: heat flow
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Eq. of relaxation

Vorticity: !µ⌫ ⌘ 1

2
(rµu⌫ �r⌫uµ)
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1st-order coefficients
2nd-order coefficients

Comparison with the other formalisms
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This expression is 
natural and  plausible!!

RG : Renormalization group method,   
CE : Chapmen-Enskog method,   
IS : Moment method. 

W. Israel and J. M. Stewart (1979) Inner product:

Linearized collision operator:

Quantum statistical effect

⇡µ⌫
p ⌘ �µ⌫⇢�p⇢p�, ⇡̂µ⌫

p ⌘ ⇡µ⌫
p /(p · u)
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RG is consistent with Kubo-formula!!

Hidaka and Kunihiro (2011)
Jeon (1995), Jeon and Yaffe (1996),



Number of conserved currents : M
Number of components : N

… charge of k-th component associated with a-th currentqak

l

k

j

i

qai + qaj = qak + qal

(In case of elastic collisions :                       )qak = mk�k,a

13/17

Extension to reactive multi-component systems
Setup

Collision process

4. Result: Hydrodynamic EquationYuta Kikuchi (Kyoto U.) 24/27

Monnai and Hirano (2010)
Prakash, Prakash, Venugopalan, and Welke (1993)
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Extension to reactive multi-component systems

@µT
µ⌫ = 0,

Eq. of relaxation

Eq. of continuity
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Diffusion flow
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5. Summary and Outlook
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We have derived relativistic second-order hydrodynamic equation 
in reactive multi-component system. 
No ansatz is imposed in renormalization group method!! 
New microscopic expressions for 2nd-order transport coefficients 
have been obtained.

Summary
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Reduce the chiral kinetic theory into hydrodynamics (chiral magnetic 
effect, chiral vortical effect, …). 
• Include force terms (Lorentz force, mean field, …) in the Boltzmann eq. 

Derive hydrodynamic eq. from Kadanoff-Baym eq. directly.  
• Include the higher loop and the off-shell effect. 

Apply the obtained eq. to phenomena (QGP, cold atom, …).

Outlook


